What is music generation? Music generation is the task of generating music or music-like sounds from a model or algorithm.
Papers and Code
Jan 27, 2025
Abstract:Diffusion based Text-To-Music (TTM) models generate music corresponding to text descriptions. Typically UNet based diffusion models condition on text embeddings generated from a pre-trained large language model or from a cross-modality audio-language representation model. This work proposes a diffusion based TTM, in which the UNet is conditioned on both (i) a uni-modal language model (e.g., T5) via cross-attention and (ii) a cross-modal audio-language representation model (e.g., CLAP) via Feature-wise Linear Modulation (FiLM). The diffusion model is trained to exploit both a local text representation from the T5 and a global representation from the CLAP. Furthermore, we propose modifications that extract both global and local representations from the T5 through pooling mechanisms that we call mean pooling and self-attention pooling. This approach mitigates the need for an additional encoder (e.g., CLAP) to extract a global representation, thereby reducing the number of model parameters. Our results show that incorporating the CLAP global embeddings to the T5 local embeddings enhances text adherence (KL=1.47) compared to a baseline model solely relying on the T5 local embeddings (KL=1.54). Alternatively, extracting global text embeddings directly from the T5 local embeddings through the proposed mean pooling approach yields superior generation quality (FAD=1.89) while exhibiting marginally inferior text adherence (KL=1.51) against the model conditioned on both CLAP and T5 text embeddings (FAD=1.94 and KL=1.47). Our proposed solution is not only efficient but also compact in terms of the number of parameters required.
* Accepted at ICASSP 2025
Via
Jan 26, 2025
Abstract:Amphion is an open-source toolkit for Audio, Music, and Speech Generation, designed to lower the entry barrier for junior researchers and engineers in these fields. It provides a versatile framework that supports a variety of generation tasks and models. In this report, we introduce Amphion v0.2, the second major release developed in 2024. This release features a 100K-hour open-source multilingual dataset, a robust data preparation pipeline, and novel models for tasks such as text-to-speech, audio coding, and voice conversion. Furthermore, the report includes multiple tutorials that guide users through the functionalities and usage of the newly released models.
Via
Jan 25, 2025
Abstract:This paper presents an approach that combines Human-In-The-Loop Reinforcement Learning (HITL RL) with principles derived from music theory to facilitate real-time generation of musical compositions. HITL RL, previously employed in diverse applications such as modelling humanoid robot mechanics and enhancing language models, harnesses human feedback to refine the training process. In this study, we develop a HILT RL framework that can leverage the constraints and principles in music theory. In particular, we propose an episodic tabular Q-learning algorithm with an epsilon-greedy exploration policy. The system generates musical tracks (compositions), continuously enhancing its quality through iterative human-in-the-loop feedback. The reward function for this process is the subjective musical taste of the user.
* This is a preprint of a paper presented at the 2023 IEEE
International Conference on Big Data (BigData). It has been made public for
the benefit of the community and should be considered a preprint rather than
a formally reviewed paper
Via
Jan 25, 2025
Abstract:Artificial intelligence is reshaping creative domains, yet its co-creative processes, especially in group settings with novice users, remain under explored. To bridge this gap, we conducted a case study in a college-level course where nine undergraduate students were tasked with creating three original music tracks using AI tools over 10 weeks. The study spanned the entire creative journey from ideation to releasing these songs on Spotify. Participants leveraged AI for music and lyric production, cover art, and distribution. Our findings highlight how AI transforms creative workflows: accelerating ideation but compressing the traditional preparation stage, and requiring novices to navigate a challenging idea selection and validation phase. We also identified a new "collaging and refinement" stage, where participants creatively combined diverse AI-generated outputs into cohesive works. Furthermore, AI influenced group social dynamics and role division among human creators. Based on these insights, we propose the Human-AI Co-Creation Stage Model and the Human-AI Agency Model, offering new perspectives on collaborative co-creation with AI.
Via
Jan 23, 2025
Abstract:We propose a unified framework for Singing Voice Synthesis (SVS) and Conversion (SVC), addressing the limitations of existing approaches in cross-domain SVS/SVC, poor output musicality, and scarcity of singing data. Our framework enables control over multiple aspects, including language content based on lyrics, performance attributes based on a musical score, singing style and vocal techniques based on a selector, and voice identity based on a speech sample. The proposed zero-shot learning paradigm consists of one SVS model and two SVC models, utilizing pre-trained content embeddings and a diffusion-based generator. The proposed framework is also trained on mixed datasets comprising both singing and speech audio, allowing singing voice cloning based on speech reference. Experiments show substantial improvements in timbre similarity and musicality over state-of-the-art baselines, providing insights into other low-data music tasks such as instrumental style transfer. Examples can be found at: everyone-can-sing.github.io.
Via
Jan 18, 2025
Abstract:The technology for generating music from textual descriptions has seen rapid advancements. However, evaluating text-to-music (TTM) systems remains a significant challenge, primarily due to the difficulty of balancing performance and cost with existing objective and subjective evaluation methods. In this paper, we propose an automatic assessment task for TTM models to align with human perception. To address the TTM evaluation challenges posed by the professional requirements of music evaluation and the complexity of the relationship between text and music, we collect MusicEval, the first generative music assessment dataset. This dataset contains 2,748 music clips generated by 31 advanced and widely used models in response to 384 text prompts, along with 13,740 ratings from 14 music experts. Furthermore, we design a CLAP-based assessment model built on this dataset, and our experimental results validate the feasibility of the proposed task, providing a valuable reference for future development in TTM evaluation. The dataset is available at https://www.aishelltech.com/AISHELL_7A.
* Accepted by ICASSP 2025
Via
Jan 17, 2025
Abstract:Composing music for video is essential yet challenging, leading to a growing interest in automating music generation for video applications. Existing approaches often struggle to achieve robust music-video correspondence and generative diversity, primarily due to inadequate feature alignment methods and insufficient datasets. In this study, we present General Video-to-Music Generation model (GVMGen), designed for generating high-related music to the video input. Our model employs hierarchical attentions to extract and align video features with music in both spatial and temporal dimensions, ensuring the preservation of pertinent features while minimizing redundancy. Remarkably, our method is versatile, capable of generating multi-style music from different video inputs, even in zero-shot scenarios. We also propose an evaluation model along with two novel objective metrics for assessing video-music alignment. Additionally, we have compiled a large-scale dataset comprising diverse types of video-music pairs. Experimental results demonstrate that GVMGen surpasses previous models in terms of music-video correspondence, generative diversity, and application universality.
* Accepted by the 39th AAAI Conference on Artificial Intelligence
(AAAI-25)
Via
Jan 20, 2025
Abstract:Audio in the real world may be perturbed due to numerous factors, causing the audio quality to be degraded. The following work presents an audio restoration model tailored for high-res music at 44.1kHz. Our model, Audio-to-Audio Schrodinger Bridges (A2SB), is capable of both bandwidth extension (predicting high-frequency components) and inpainting (re-generating missing segments). Critically, A2SB is end-to-end without need of a vocoder to predict waveform outputs, able to restore hour-long audio inputs, and trained on permissively licensed music data. A2SB is capable of achieving state-of-the-art bandwidth extension and inpainting quality on several out-of-distribution music test sets. Our demo website is https: //research.nvidia.com/labs/adlr/A2SB/.
Via
Jan 17, 2025
Abstract:In the face of a new era of generative models, the detection of artificially generated content has become a matter of utmost importance. In particular, the ability to create credible minute-long synthetic music in a few seconds on user-friendly platforms poses a real threat of fraud on streaming services and unfair competition to human artists. This paper demonstrates the possibility (and surprising ease) of training classifiers on datasets comprising real audio and artificial reconstructions, achieving a convincing accuracy of 99.8%. To our knowledge, this marks the first publication of a AI-music detector, a tool that will help in the regulation of synthetic media. Nevertheless, informed by decades of literature on forgery detection in other fields, we stress that getting a good test score is not the end of the story. We expose and discuss several facets that could be problematic with such a deployed detector: robustness to audio manipulation, generalisation to unseen models. This second part acts as a position for future research steps in the field and a caveat to a flourishing market of artificial content checkers.
* Accepted for IEEE ICASSP 2025. arXiv admin note: substantial text
overlap with arXiv:2405.04181
Via
Jan 15, 2025
Abstract:In recent years, remarkable advancements in artificial intelligence-generated content (AIGC) have been achieved in the fields of image synthesis and text generation, generating content comparable to that produced by humans. However, the quality of AI-generated music has not yet reached this standard, primarily due to the challenge of effectively controlling musical emotions and ensuring high-quality outputs. This paper presents a generalized symbolic music generation framework, XMusic, which supports flexible prompts (i.e., images, videos, texts, tags, and humming) to generate emotionally controllable and high-quality symbolic music. XMusic consists of two core components, XProjector and XComposer. XProjector parses the prompts of various modalities into symbolic music elements (i.e., emotions, genres, rhythms and notes) within the projection space to generate matching music. XComposer contains a Generator and a Selector. The Generator generates emotionally controllable and melodious music based on our innovative symbolic music representation, whereas the Selector identifies high-quality symbolic music by constructing a multi-task learning scheme involving quality assessment, emotion recognition, and genre recognition tasks. In addition, we build XMIDI, a large-scale symbolic music dataset that contains 108,023 MIDI files annotated with precise emotion and genre labels. Objective and subjective evaluations show that XMusic significantly outperforms the current state-of-the-art methods with impressive music quality. Our XMusic has been awarded as one of the nine Highlights of Collectibles at WAIC 2023. The project homepage of XMusic is https://xmusic-project.github.io.
* accepted by TMM
Via